3988 independent reflections 3265 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.017$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hydrogen bonding in pyrimethamine hydrogen adipate

Periasamy Devi,^a Packianathan Thomas Muthiah,^a* Tayur N. Guru Row^b and Vijay Thiruvenkatam^b

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India Correspondence e-mail: tommtrichy@yahoo.co.in

Received 3 September 2007; accepted 11 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.155; data-to-parameter ratio = 16.1.

In 2,4-diamino-5-(*p*-chlorophenyl)-6-ethylpyrimidinium hydrogen adipate, $C_{12}H_{14}ClN_4^+ \cdot C_6H_9O_4^-$, the protonated pyrimethamine cation interacts with the carboxylate group of the adipate ion through $N-H\cdots O$ hydrogen bonds, forming a cyclic hydrogen-bonded $R_2^2(8)$ motif. The carboxyl and carboxylate groups of the adipate ions are linked through $O-H\cdots O$ hydrogen bonds in a head-to-tail fashion, forming a chain. Anions and cations are further connected by an extensive network of $N-H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Allen (2002); Bakalbassis *et al.* (2001); Barker & Marsh (1964); Bernstein *et al.* (1995); Bucar *et al.* (2007); De *et al.* (1989); Devi *et al.* (2006); Etter (1990); Hemamalini *et al.* (2005); Kuyper (1990); Lynch & Jones (2004); Robert *et al.* (2001); Roy *et al.* (2005); Sansom *et al.* (1989); Sethuraman & Thomas Muthiah (2002); Sethuraman *et al.* (2003); Sharma *et al.* (2006); Stanley *et al.* (2002); Vallee & Auld (1993); Voet & Rich (1969, 1970); Zheng *et al.* (2000, 2001); Hitchings & Burchall (1965); Kraut & Matthews (1987); Muthiah *et al.* (2006); Vanier & Brisse (1983); Zuccotto *et al.* (1998).

Experimental

Crystal data

$C_{12}H_{14}ClN_4^+ \cdot C_6H_9O_4^-$	$\gamma = 71.20 \ (2)^{\circ}$
$M_r = 394.85$	V = 1016 (3) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 8.154 (1) Å	Mo $K\alpha$ radiation
p = 11.420 (2) Å	$\mu = 0.22 \text{ mm}^{-1}$
r = 12.238 (2) Å	$T = 293 { m K}$
$\alpha = 79.38 \ (2)^{\circ}$	$0.3 \times 0.12 \times 0.1 \text{ mm}$
$3 = 71.06 (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: none
9586 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	247 parameters
$wR(F^2) = 0.155$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
3988 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O2	0.86	1.84	2.698 (5)	178
$N2-H2A\cdotsO1^{i}$	0.86	2.24	2.911 (5)	134
$N2 - H2B \cdots O1$	0.86	2.07	2.909 (5)	166
$O4-H4\cdots O2^{ii}$	0.82	1.79	2.581 (5)	161
$N4 - H4A \cdots O3^{i}$	0.86	2.09	2.941 (5)	169
N4-H4 B ···O3 ⁱⁱⁱ	0.86	2.30	2.986 (5)	136

Symmetry codes: (i) -x + 3, -y, -z + 1; (ii) x + 1, y, z; (iii) x - 2, y + 1, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003) and *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2499).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Bakalbassis, E. G., Korabik, M., Michailides, A., Mrozinski, J., Raptopoulou, C., Skoulika, S., Terzis, A. & Tsaousis, D. (2001). J. Chem. Soc. Dalton Trans. pp. 850–857.
- Barker, D. L. & Marsh, R. E. (1964). Acta Cryst. 17, 1581–1587.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bucar, D. K., Henry, R. F., Lou, X., Borchardt, T. B. & Zhang, G. G. Z. (2007). *Chem. Commun.* pp. 525–527.
- De, A., Basak, A. K. & Roychowdhury, P. (1989). *Indian J. Phys. Sect. A*, **63**, 553–563.
- Devi, P., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. E62, o3704–o3706.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Hemamalini, M., Muthiah, P. T., Sridhar, B. & Rajaram, R. K. (2005). Acta Cryst. E61, 01480–01482.

Hitchings, G. H. & Burchall, J. J. (1965). Adv. Enzymol. 27, 417-468.

- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kraut, J. & Matthews, D. A. (1987). Biological Macromolecules and Assemblies, edited by F. A. Jurnak & A. McPherson, Vol. 3, pp. 1–71. New York: John Wiley & Sons Ltd.
- Kuyper, L. F. (1990). Crystallographic and Modeling Methods in Molecular Design, edited by C. E. Bugg & S. E. Ealick, pp. 56–79. New York: Springer Verlag.
- Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.
- Muthiah, P. T., Francis, S., Rychlewska, U. & Warzajtis, B. (2006). Beilstein J. Org. Chem. 2, 1-8.
- Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206-o1208.
- Roy, S., Singh, D. D. & Vijayan, M. (2005). Acta Cryst. B61, 89-95.
- Sansom, C. E., Schwalbe, C. H., Lambert, P. A., Griffin, R. J. & Stevens, M. F. G. (1989). Biochim. Biophys. Acta, 995, 21–27.
- Sethuraman, V., Stanley, N., Muthiah, P. T., Sheldrick, W. S., Winter, M., Luger, P. & Weber, M. (2003). Cryst. Growth Des. 3, 823–828.

- Sethuraman, V. & Thomas Muthiah, P. (2002). Acta Cryst. E58, 0817-0818.
- Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, 0148–0152.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stanley, N., Sethuraman, V., Muthiah, P. T., Luger, P. & Weber, M. (2002). Cryst. Growth Des. 2, 631–635.
- Vallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res. 26, 543-551.
- Vanier, M. & Brisse, F. (1983). Acta Cryst. C39, 914-915.
- Voet, D. & Rich, A. (1969). J. Am. Chem. Soc. 91, 3069-3075.
- Voet, D. & Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183–265.
- Zheng, Y. Q., Lin, J. L. & Pan, A. Y. (2000). Z. Anorg. Allg. Chem. 626, 1718– 1720.
- Zheng, Y. Q., Sun, J. & Lin, J. L. Z. (2001). Z. Anorg. Allg. Chem. 627, 90-94.
- Zuccotto, F., Martin, A. C. R., Laskowski, R. A., Thornton, J. M. & Gilbert, I. H. (1998). J. Comput. Aided Mol. Des. 12, 241–257.

Acta Cryst. (2007). E63, o4065-o4066 [doi:10.1107/S1600536807044364]

Hydrogen bonding in pyrimethamine hydrogen adipate

P. Devi, P. T. Muthiah, T. N. G. Row and V. Thiruvenkatam

Comment

Pyrimethamine [PMN] is an antimalarial drug widely employed in the chemotherapy of malaria. The drug selectively binds to the bacterial Dihydrofolate reductase enzyme (DHFR) with greater affinity than to the human enzyme inhibiting the synthesis of proteins and nucleic acids (Hitchings & Burchall, 1965). PMN [2,4-diamino-5- (p-chlorophenyl)-6-ethylpyrimidine] also used in combination with other drugs for treatment of protozoan disease like toxoplasmosis, bacterial infections and some types of cancer (Zuccotto et al., 1998; Kraut & Matthews, 1987). Adipic acid is used as acidulant in baking powders, in beverages and as a gelatinizing agent. Supramolecular aggregates of adipic acid with amino acids like L- and DL-Lysine(Sharma et al., 2006) and L-and DL-arginine (Roy et al., 2005) have been reported in literature. Adipic acid also forms complexes with metals like Cu, Cd, Ni (Bakalbassis et al., 2001) and co-crystal with caffeine (Bucar et al., 2007). Pyrimidine and aminopyrimidines are biologically important compounds and occur in nature as components of nucleic acid. The diaminopyrimidines PMN and TMP (trimethoprim) are components of many drugs. The carboxyl group and carboxylate anion involve in hydrogen bonding interactions with aminopyrimidines (Vallee & Auld, 1993). These interactions play a vital role in protein-nucleic acid and drug-protein recognition processes (Kuyper, 1990). Crystal structures of pyrimethamine (Sethuraman & Thomas Muthiah, 2002), PMN salts (Sethuraman et al., 2003), PMN hydrogen glutarate and PMN formate (Stanley et al., 2002), PMN 3-chloro benzoate, PMN sulfosalicylate monohydrate (Hemamalini et al., 2005) have been reported in our laboratory. The present study has been undertaken to study the hydrogen bonding patterns involving hydrogen adipate anion with the pyrimethamine cation. An ORTEP (II) view of the compound (I) is shown in Fig (1). The asymmetric unit contains one PMN cation and a hydrogen adipate anion. PMN is protonated at N1 as it is evident from the enhancement of internal angle at N1 from 116.3 (2)° in neutral PMN molecule A and 116.09 (18)° in molecule B (Sethuraman & Thomas Muthiah, 2002) to 121.32 (18)°. The conformation of PMN is described two angles namely dihedral and torsion angles. The dihedral angle between 2, 4 diamino pyrimidine and p-chlorophenyl rings is found to be 79.47 (10)°. The torsion angle C5—C6—C7—C8, which represents the deviation of the ethyl group from the pyrimidine ring is found to be 99.3 (3)°. The values are close to the modeling studies of DHFR-PMN complexes (Sansom et al., 1989). The C5—C9 bond length connecting the pyrimidine and phenyl ring was found to be 1.504 (4) Å. This is in agreement with the reported value (De et al., 1989). Adipic acid tends to deviate from the standard trans (Vanier & Brisse, 1983) conformation. This may be due to increasing chain length of the lower aliphatic dicarboxylic acids and the flexibility of the bonds to adopt twisted conformations. The actual values of the torsion angles are $-174.9 (2)^{\circ}$, $-170.8 (2)^{\circ}$ and $-69.4 (3)^{\circ}$ for C15—C16—C17—C18, C16—C17—C18—C19 and C17—C18—C19—C20 respectively. The angles indicate that the hydrogen adipate anion exhibits trans-trans-gauche conformation (Zheng et al., 2000; Zheng et al., 2001), which has been confirmed from CSD search of 46 adipic acid fragments (Allen & Kennard, 1993). The various hydrogen-bonding interactions are shown in Table 1. The protonated N1 cation interacts with the carboxyl ate group of the adipate ion via N-H…O hydrogen bonds forming cyclic hydrogen bonded ring motif represented by graph-set notation $R^2_2(8)$ (Etter, 1990; Bernstein et al., 1995; Lynch & Jones, 2004). The ring motif further self assembles to form a complementary DDAA (D represents hydrogen bond donor and A represents hydrogen bond acceptor) array of quadruple hydrogen bonds. The graph set notation of three fused rings is designated as $R^{2}_{2}(8)$, $R^{2}_{4}(8)$, $R^{2}_{2}(8)$ shown in Fig(2). Similar type of interactions has also been observed

in crystal structures of TMP hydrogen adipate (Muthiah *et al.*, 2006), PMN *m*-chlorobenzoate (Devi *et al.*, 2006), TMP hydrogen glutarate (Robert *et al.*, 2001), and PMN hydrogen glutarate (Stanley *et al.*, 2002). The carboxyl and carboxylate ends of hydrogen adipate anion adopts a folded *syn* conformation so as to tie the 2-amino and 4-amino groups of the paired PMN cation on either sides to form a large 15 membered ring[$R^2_2(15)$]. Similar interactions are seen in crystal structure of TMP hydrogen adipate (Muthiah *et al.*, 2006). The hydrogen adipate ions are linked through O—H···O hydrogen bonds with the carboxylate group forming the head and carboxyl group forming the tail portions respectively. The infinite supra-molecular chain [graph set: C(9)] is shown in Fig (3). This type of head to tail arrangement of hydrogen bonding has been observed in PMN hydrogen glutarate (Stanley *et al.*, 2002) and TMP hydrogen glutarate (Robert *et al.*, 2001). In adipate ions, the carbonyl O3 atoms of the free carboxyl group interacts with 4-amino groups of the pyrimethamine cations through N—H···O hydrogen bonds forming a quadrilateral ring $R^2_4(8)$, shown in Fig(2). This ring formation has also been observed in the crystal structures of cytosine (Barker & Marsh, 1964), 1-methyl cytosine and 5-fluoro-uracil complex (Voet & Rich, 1970) and cytosine and 5-fluoro-uracil complex (Voet & Rich, 1969).

Experimental

Pyrimethamine (62 mg, Shah Pharma Chem, India), adipic acid (36 mg, Merck) were mixed in 1:1 molar ratio in hot methanolic solution. The mixtures were allowed to cool at room temperature. Colourless needle shaped crystals were obtained after a few days.

Refinement

All the hydrogen atoms were fixed geometrically and were refined using a riding model with C—H = 0.93 Å-0.97 Å, N—H = 0.86Å and O—H 0.82Å and with U_{iso} (H)=1.2 U_{eq} (parent atom).

Figures

Fig. 1. An *ORTEPII* (Johnson, 1976) diagram of the asymmetric unit of (I), showing 50% probability displacement ellipsoids.

Fig. 2. Hydrogen bonding pattern of complementary DDAA array and quadrilateral ring. [Symmetry codes: (i) -x + 3, -y, -z + 1; (iii) x - 2, y + 1, z].

Fig. 3. Head-to-tail arrangement of supramolecular chain of adipate ions. [Symmetry code: (ii) x + 1, y, z].

2,4-diamino-5-(p-chlorophenyl)-6-ethylpyrimidinium hydrogen adipate

Crystal data

$C_{12}H_{14}CIN_4^+ C_6H_9O_4^-$	Z = 2
$M_r = 394.85$	$F_{000} = 416$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.291 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation

a = 8.154(1) Å
b = 11.420 (2) Å
c = 12.238 (2) Å
$\alpha = 79.38 \ (2)^{\circ}$
$B = 71.06 \ (2)^{\circ}$
$y = 71.20 \ (2)^{\circ}$
$V = 1016 (3) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer	3265 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.017$
Monochromator: graphite	$\theta_{\text{max}} = 27.1^{\circ}$
T = 293 K	$\theta_{\min} = 1.8^{\circ}$
ω–scans	$h = -10 \rightarrow 10$
Absorption correction: none	$k = -14 \rightarrow 14$
9586 measured reflections	$l = -14 \rightarrow 15$
3988 independent reflections	

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 1.8-27.1^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 293 K

Needle, colourless $0.3 \times 0.12 \times 0.1 \text{ mm}$

Cell parameters from 25 reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.0761P)^2 + 0.4803P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.155$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.75 \text{ e } \text{\AA}^{-3}$
3988 reflections	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
247 parameters	Extinction correction: shelx197
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.004 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates of	and isotropic or	equivalent isotropic	displacement parameters $(Å^2)$
		_	II. */II

	x	У	Z	$U_{\rm iso} * / U_{\rm eq}$
Cl1	0.34022 (11)	0.32332 (8)	0.00817 (7)	0.0860 (3)
N1	1.1280 (2)	0.03254 (15)	0.34090 (15)	0.0420 (5)
N2	1.2397 (2)	0.07015 (18)	0.47705 (15)	0.0495 (6)
N3	0.9774 (2)	0.21031 (16)	0.44490 (14)	0.0436 (5)
N4	0.7145 (2)	0.34147 (17)	0.41299 (16)	0.0538 (6)
C2	1.1124 (3)	0.10668 (18)	0.42111 (16)	0.0391 (6)
C4	0.8543 (3)	0.24149 (18)	0.38477 (17)	0.0396 (6)
C5	0.8706 (3)	0.17170 (17)	0.29244 (17)	0.0389 (6)
C6	1.0088 (3)	0.06442 (18)	0.27514 (17)	0.0415 (6)
C7	1.0468 (3)	-0.0232 (2)	0.1858 (2)	0.0616 (9)
C8	1.1962 (5)	-0.0045 (4)	0.0776 (3)	0.1047 (16)
С9	0.7367 (3)	0.21222 (17)	0.22296 (17)	0.0396 (6)
C10	0.7511 (3)	0.3024 (2)	0.1302 (2)	0.0596 (8)
C11	0.6303 (4)	0.3365 (3)	0.0632 (2)	0.0671 (9)
C12	0.4946 (3)	0.2799 (2)	0.09055 (19)	0.0521 (7)
C13	0.4764 (3)	0.1909 (2)	0.1818 (2)	0.0597 (8)
C14	0.5978 (3)	0.1571 (2)	0.2481 (2)	0.0562 (8)
01	1.5619 (2)	-0.13053 (15)	0.39195 (16)	0.0613 (6)
02	1.3938 (2)	-0.18294 (14)	0.30789 (16)	0.0594 (6)
O3	2.3656 (3)	-0.48130 (16)	0.38775 (17)	0.0706 (7)
O4	2.2650 (2)	-0.33732 (15)	0.25569 (15)	0.0590 (6)
C15	1.5422 (3)	-0.1989 (2)	0.3318 (2)	0.0494 (7)
C16	1.7001 (3)	-0.3033 (3)	0.2752 (3)	0.0774 (10)
C17	1.8551 (3)	-0.3532 (2)	0.3244 (2)	0.0609 (8)
C18	2.0095 (3)	-0.4499 (2)	0.2505 (3)	0.0633 (9)
C19	2.1553 (4)	-0.5163 (2)	0.3095 (3)	0.0675 (9)
C20	2.2707 (3)	-0.4429 (2)	0.3223 (2)	0.0494 (7)
H1	1.21400	-0.03560	0.33110	0.0500*
H2A	1.23490	0.11370	0.52890	0.0590*
H2B	1.32630	0.00310	0.46110	0.0590*
H4A	0.70540	0.38320	0.46750	0.0650*
H4B	0.63330	0.36430	0.37670	0.0650*
H7A	0.93730	-0.01070	0.16440	0.0740*
H7B	1.08080	-0.10810	0.21960	0.0740*
H8A	1.16410	0.07980	0.04440	0.1570*
H8B	1.21240	-0.05990	0.02230	0.1570*
H8C	1.30670	-0.02140	0.09750	0.1570*
H10	0.84250	0.34080	0.11240	0.0710*
H11	0.64160	0.39670	0.00090	0.0810*
H13	0.38420	0.15340	0.19940	0.0720*
H14	0.58570	0.09670	0.31010	0.0670*
H4	2.32700	-0.30130	0.26990	0.0890*
H16A	1.65360	-0.37170	0.27590	0.0930*
H16B	1.74600	-0.27460	0.19450	0.0930*
H17A	1.81520	-0.39120	0.40240	0.0730*

H17B	1.89920	-0.28560	0.32940	0.0730*
H18A	1.96110	-0.51030	0.23500	0.0760*
H18B	2.06230	-0.40890	0.17670	0.0760*
H19A	2.09780	-0.54900	0.38640	0.0810*
H19B	2.23460	-0.58680	0.26670	0.0810*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0792 (5)	0.1157 (7)	0.0790 (5)	-0.0179 (4)	-0.0553 (4)	-0.0043 (4)
N1	0.0379 (9)	0.0389 (9)	0.0504 (10)	-0.0029 (7)	-0.0203 (7)	-0.0073 (7)
N2	0.0413 (9)	0.0595 (11)	0.0510 (10)	-0.0062 (8)	-0.0222 (8)	-0.0108 (8)
N3	0.0399 (9)	0.0492 (10)	0.0424 (9)	-0.0077 (7)	-0.0156 (7)	-0.0077 (7)
N4	0.0514 (10)	0.0517 (10)	0.0576 (11)	0.0059 (8)	-0.0268 (9)	-0.0198 (8)
C2	0.0358 (10)	0.0458 (11)	0.0361 (10)	-0.0134 (8)	-0.0111 (8)	0.0001 (8)
C4	0.0389 (10)	0.0405 (10)	0.0390 (10)	-0.0095 (8)	-0.0134 (8)	-0.0013 (8)
C5	0.0391 (10)	0.0387 (10)	0.0404 (10)	-0.0094 (8)	-0.0156 (8)	-0.0025 (8)
C6	0.0421 (10)	0.0399 (10)	0.0457 (11)	-0.0094 (8)	-0.0186 (9)	-0.0041 (8)
C7	0.0614 (14)	0.0495 (13)	0.0829 (17)	0.0056 (10)	-0.0428 (13)	-0.0257 (12)
C8	0.109 (3)	0.123 (3)	0.078 (2)	-0.014 (2)	-0.013 (2)	-0.058 (2)
C9	0.0392 (10)	0.0390 (10)	0.0410 (10)	-0.0055 (8)	-0.0160 (8)	-0.0063 (8)
C10	0.0587 (14)	0.0644 (15)	0.0657 (15)	-0.0290 (12)	-0.0318 (12)	0.0168 (12)
C11	0.0696 (16)	0.0763 (17)	0.0595 (15)	-0.0255 (14)	-0.0343 (13)	0.0221 (13)
C12	0.0475 (12)	0.0641 (14)	0.0466 (12)	-0.0047 (10)	-0.0231 (10)	-0.0117 (10)
C13	0.0497 (13)	0.0736 (16)	0.0654 (15)	-0.0265 (12)	-0.0242 (11)	0.0012 (12)
C14	0.0548 (13)	0.0641 (14)	0.0545 (13)	-0.0247 (11)	-0.0239 (11)	0.0128 (11)
01	0.0521 (9)	0.0558 (9)	0.0875 (12)	-0.0026 (7)	-0.0383 (9)	-0.0230 (9)
O2	0.0432 (8)	0.0513 (9)	0.0935 (12)	-0.0013 (7)	-0.0377 (8)	-0.0186 (8)
03	0.0766 (12)	0.0603 (10)	0.0788 (12)	0.0042 (9)	-0.0453 (10)	-0.0157 (9)
O4	0.0568 (10)	0.0590 (10)	0.0756 (11)	-0.0168 (8)	-0.0378 (9)	-0.0049 (8)
C15	0.0419 (11)	0.0457 (11)	0.0665 (14)	-0.0071 (9)	-0.0270 (10)	-0.0076 (10)
C16	0.0483 (14)	0.0833 (19)	0.111 (2)	0.0037 (13)	-0.0370 (15)	-0.0481 (17)
C17	0.0466 (13)	0.0659 (15)	0.0725 (16)	-0.0073 (11)	-0.0219 (12)	-0.0183 (12)
C18	0.0436 (12)	0.0645 (15)	0.0900 (19)	-0.0100 (11)	-0.0199 (12)	-0.0345 (14)
C19	0.0623 (15)	0.0556 (14)	0.0877 (19)	-0.0121 (12)	-0.0227 (14)	-0.0198 (13)
C20	0.0428 (11)	0.0449 (11)	0.0579 (13)	0.0024 (9)	-0.0163 (10)	-0.0213 (10)

Geometric parameters (Å, °)

Cl1—C12	1.756 (4)	C11—C12	1.377 (5)
O1—C15	1.244 (3)	C12—C13	1.369 (4)
O2—C15	1.285 (4)	C13—C14	1.395 (4)
O3—C20	1.219 (4)	С7—Н7А	0.9706
O4—C20	1.322 (3)	С7—Н7В	0.9702
O4—H4	0.8201	C8—H8A	0.9606
N1—C6	1.377 (4)	C8—H8C	0.9599
N1—C2	1.361 (3)	C8—H8B	0.9600
N2—C2	1.341 (4)	C10—H10	0.9302
N3—C2	1.333 (3)	C11—H11	0.9298

N3—C4	1.352 (4)	С13—Н13	0.9292
N4—C4	1.332 (3)	C14—H14	0.9293
N1—H1	0.8601	C15—C16	1.515 (5)
N2—H2A	0.8598	C16—C17	1.479 (5)
N2—H2B	0.8603	C17—C18	1.535 (4)
N4—H4A	0.8602	C18—C19	1.511 (5)
N4—H4B	0.8605	C19—C20	1.505 (5)
C4—C5	1.448 (4)	C16—H16A	0.9697
С5—С9	1.504 (4)	C16—H16B	0.9709
C5—C6	1.366 (4)	С17—Н17А	0.9706
C6—C7	1.509 (4)	С17—Н17В	0.9694
C7—C8	1.516 (5)	C18—H18A	0.9694
C9—C14	1.391 (4)	CI8—HI8B	0.9705
C9—C10	1.387 (4)	CI9—HI9A	0.9705
C10—C11	1.398 (5)	стэ—нтэв 	0.9699
Cl1···C16 ¹	3.642 (6)	С16…Н4	3.0566
Cl1···H16B ⁱ	2.9746	С20…Н17В	2.9648
01…N2	2.909 (5)	C20····H4A ⁱⁱ	2.8597
O1…N2 ⁱⁱ	2.911 (5)	H1…O2	1.8377
O2…O4 ⁱⁱⁱ	2.581 (5)	H1…H7B	2.3844
O2···C20 ⁱⁱⁱ	3.386 (6)	H1…C15	2.7262
O2…N1	2.698 (5)	H1····H2B	2.2429
O3…N4 ⁱⁱ	2.941 (5)	H2A…H17B ⁱⁱ	2.5878
O3…N4 ^{iv}	2.986 (5)	H2A…O1 ⁱⁱ	2.2442
$O4\cdots O2^{v}$	2.581 (5)	H2B····O2	2.8943
O4…C17	3.228 (6)	H2B…O1	2.0656
O1····H2A ⁱⁱ	2.2442	H2B…C15	2.8008
O1···H2B	2.0656	H2B…H1	2.2429
O1…H17B	2.6982	H4…H16A ^v	2.5434
O1···H14 ^v	2.6486	$H4\cdots O2^{v}$	1.7918
O2…H1	1.8377	H4…C15 ^v	2.7445
O2…H2B	2.8943	H4…C16 ^v	3.0566
O2…H7B	2.9078	$H4\cdots H7B^{v}$	2.5930
O2…H4 ⁱⁱⁱ	1.7918	H4A…O3 ⁱⁱ	2.0919
O3…H17A ^{vi}	2.9045	H4A…C20 ⁱⁱ	2.8597
O3…H4B ^{iv}	2.3038	H4B…C9	2.5491
O3···H16A ^v	2.8515	H4B…O3 ^{viii}	2.3038
O3…H4A ⁱⁱ	2.0919	H4B…C10	2.9983
$O4 \cdots H7B^{v}$	2.6026	H7A…C14	2.8015
O4…H17B	2.7154	H7A…C9	2.6263
O4…H18B	2.5561	H7B…O4 ⁱⁱⁱ	2.6026
N1…O2	2.698 (5)	H7B…O2	2.9078
N1…C2 ^{vii}	3.384 (6)	H7B…H1	2.3844
N2…O1	2.909 (5)	H7B…H4 ⁱⁱⁱ	2.5930

N2···O1 ⁱⁱ	2.911 (5)	H8B···C12 ⁱ	3.0324
N4····O3 ^{viii}	2.986 (5)	H8C…N1	2.9421
N4···O3 ⁱⁱ	2.941 (5)	H13…N1 ⁱⁱⁱ	2.8102
N1···H8C	2.9421	H13····C2 ⁱⁱⁱ	2.9805
N1…H13 ^v	2.8102	H14…O1 ⁱⁱⁱ	2.6486
C2···C2 ^{vii}	3.446 (6)	H16A····O3 ⁱⁱⁱ	2.8515
C2…N1 ^{vii}	3.384 (6)	H16A…H4 ⁱⁱⁱ	2.5434
C7C14	3 483 (6)	H16A…H18A	2 4417
C14···C7	3.483 (6)	H16B…H18B	2.5021
C16…Cl1 ⁱ	3.642 (6)	H16B····Cl1 ⁱ	2.9746
C17···O4	3.228 (6)	Н17А…Н19А	2.3993
C20O2 ^v	3.386 (6)	H17A…O3 ^{vi}	2.9045
C_{2} H_{12}^{V}	2 9805	H17B…O1	2 6982
C2H7A	2.5005	H17B…O4	2.0902
C9H4B	2 5491	H17B····C20	2.7134
C10····H4B	2 9983	H17DH2A ⁱⁱ	2.5616
	3.0324	H18AH16A	2.3070
	2.7609		2.7717
С12…Н19В	2.7608	H18B…04	2.5561
C13···H19B ^{viii}	2.7979	H18B…H16B	2.5021
С14…Н7А	2.8015	H19A…H17A	2.3993
С15…Н1	2.7262	H19B····C12 ^{iv}	2.7608
C15····H4 ⁱⁱⁱ	2.7445	H19B····C13 ^{iv}	2.7979
C15…H2B	2.8008		
С20—О4—Н4	109.48	H8A—C8—H8C	109.42
C2—N1—C6	121.32 (18)	H8B—C8—H8C	109.49
C2—N3—C4	117.41 (18)	С7—С8—Н8С	109.50
C2—N1—H1	119.34	C11—C10—H10	119.54
C6—N1—H1	119.34	С9—С10—Н10	119.45
C2—N2—H2A	120.04	C10-C11-H11	120.32
C2—N2—H2B	120.03	C12—C11—H11	120.46
H2A—N2—H2B	119.93	C14—C13—H13	120.36
C4—N4—H4A	119.98	С12—С13—Н13	120.36
H4A—N4—H4B	120.03	C9—C14—H14	119.43
C4—N4—H4B	120.00	C13—C14—H14	119.43
N2—C2—N3	120.72 (19)	O1—C15—C16	120.7 (2)
N1—C2—N2	116.74 (19)	O2—C15—C16	115.6 (2)
N1—C2—N3	122.5 (2)	O1—C15—O2	123.6 (2)
N3—C4—C5			1187(3)
	122.70 (19)	C15—C16—C17	110.7(3)
N3—C4—N4	122.70 (19) 117.24 (18)	C15—C16—C17 C16—C17—C18	111.8 (2)
N3—C4—N4 N4—C4—C5	122.70 (19) 117.24 (18) 120.1 (2)	C15—C16—C17 C16—C17—C18 C17—C18—C19	111.8 (2) 112.2 (3)
N3—C4—N4 N4—C4—C5 C4—C5—C9	122.70 (19) 117.24 (18) 120.1 (2) 121.56 (18)	C15—C16—C17 C16—C17—C18 C17—C18—C19 C18—C19—C20	111.8 (2) 112.2 (3) 117.7 (2)
N3-C4-N4 N4-C4-C5 C4-C5-C9 C4-C5-C6	122.70 (19) 117.24 (18) 120.1 (2) 121.56 (18) 116.7 (2)	C15—C16—C17 C16—C17—C18 C17—C18—C19 C18—C19—C20 O3—C20—C19	111.8 (2) 112.2 (3) 117.7 (2) 121.4 (2)
N3-C4-N4 N4-C4-C5 C4-C5-C9 C4-C5-C6 C6-C5-C9	122.70 (19) 117.24 (18) 120.1 (2) 121.56 (18) 116.7 (2) 121.72 (19)	C15—C16—C17 C16—C17—C18 C17—C18—C19 C18—C19—C20 O3—C20—C19 O4—C20—C19	111.8 (2) 112.2 (3) 117.7 (2) 121.4 (2) 115.3 (2)
N3-C4-N4 N4-C4-C5 C4-C5-C9 C4-C5-C6 C6-C5-C9 N1-C6-C7	122.70 (19) 117.24 (18) 120.1 (2) 121.56 (18) 116.7 (2) 121.72 (19) 115.77 (19)	C15—C16—C17 C16—C17—C18 C17—C18—C19 C18—C19—C20 O3—C20—C19 O4—C20—C19 O3—C20—O4	111.8 (2) 111.8 (2) 112.2 (3) 117.7 (2) 121.4 (2) 115.3 (2) 123.2 (2)

N1—C6—C5	119.10 (19)	C15—C16—H16B	107.64
C6—C7—C8	112.5 (2)	C17—C16—H16A	107.68
C5—C9—C10	121.2 (2)	C17—C16—H16B	107.65
C5—C9—C14	120.59 (18)	H16A—C16—H16B	107.01
C10—C9—C14	118.2 (2)	C16—C17—H17A	109.25
C9—C10—C11	121.0 (2)	С16—С17—Н17В	109.32
C10-C11-C12	119.2 (2)	C18—C17—H17A	109.22
Cl1—C12—C13	119.2 (2)	С18—С17—Н17В	109.29
Cl1—C12—C11	119.66 (19)	H17A—C17—H17B	107.89
C11—C12—C13	121.2 (2)	C17—C18—H18A	109.18
C12—C13—C14	119.3 (2)	C17—C18—H18B	109.16
C9—C14—C13	121.1 (2)	C19—C18—H18A	109.20
С6—С7—Н7В	109.14	C19—C18—H18B	109.11
С8—С7—Н7А	109.07	H18A—C18—H18B	107.90
С8—С7—Н7В	109.10	C18—C19—H19A	107.82
H7A—C7—H7B	107.83	C18—C19—H19B	107.88
С6—С7—Н7А	109.10	С20—С19—Н19А	107.88
С7—С8—Н8А	109.47	С20—С19—Н19В	107.92
С7—С8—Н8В	109.50	H19A—C19—H19B	107.18
H8A—C8—H8B	109.44		
C2—N1—C6—C5	-1.1 (3)	C5—C6—C7—C8	99.4 (3)
C2—N1—C6—C7	177.32 (19)	N1	-78.9 (3)
C6—N1—C2—N2	-177.18 (19)	C5-C9-C10-C11	177.6 (2)
C6—N1—C2—N3	3.4 (3)	C5-C9-C14-C13	-177.8 (2)
C4—N3—C2—N1	-0.8 (3)	C14—C9—C10—C11	-0.4 (3)
C2—N3—C4—C5	-3.9 (3)	C10-C9-C14-C13	0.3 (3)
C4—N3—C2—N2	179.81 (19)	C9—C10—C11—C12	0.4 (4)
C2—N3—C4—N4	176.57 (19)	C10-C11-C12-C13	-0.1 (4)
N3—C4—C5—C6	6.0 (3)	C10-C11-C12-Cl1	179.2 (2)
N4—C4—C5—C9	2.6 (3)	C11—C12—C13—C14	0.0 (4)
N3—C4—C5—C9	-176.8 (2)	Cl1—C12—C13—C14	-179.37 (17)
N4—C4—C5—C6	-174.5 (2)	C12—C13—C14—C9	0.0 (3)
C9—C5—C6—N1	179.56 (19)	O2-C15-C16-C17	-161.3 (2)
C4—C5—C6—C7	178.5 (2)	O1-C15-C16-C17	22.4 (4)
C4—C5—C6—N1	-3.3 (3)	C15—C16—C17—C18	-174.9 (2)
C4—C5—C9—C14	-99.6 (2)	C16-C17-C18-C19	-170.8 (2)
C6—C5—C9—C10	-100.6 (3)	C17—C18—C19—C20	-69.4 (3)
C6—C5—C9—C14	77.5 (3)	C18—C19—C20—O4	-16.5 (4)
C4C5C9C10	82.4 (3)	C18—C19—C20—O3	165.4 (3)
C9—C5—C6—C7	1.3 (3)		
	12 11 (11) 1		1 1 1 /

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+3, -*y*, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) *x*+2, *y*-1, *z*; (v) *x*+1, *y*, *z*; (vi) -*x*+4, -*y*-1, -*z*+1; (vii) -*x*+2, -*y*, -*z*+1; (viii) *x*-2, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…O2	0.86	1.84	2.698 (5)	178
N2—H2A···O1 ⁱⁱ	0.86	2.24	2.911 (5)	134
N2—H2B…O1	0.86	2.07	2.909 (5)	166

$O4-H4\cdots O2^{v}$	0.82	1.79	2.581 (5)	161
N4—H4A…O3 ⁱⁱ	0.86	2.09	2.941 (5)	169
N4—H4B···O3 ^{viii}	0.86	2.30	2.986 (5)	136

Symmetry codes: (ii) -*x*+3, -*y*, -*z*+1; (v) *x*+1, *y*, *z*; (viii) *x*-2, *y*+1, *z*.

Fig. 1

Fig. 2

